Connected Action
Menu
  • Services
    • Buy a social media network map and report
    • Training
    • Conferences
    • Data Reporting
    • Log in or Join us
    • Customize NodeXL
    • NodeXL
    • Marc Smith
    • About Us
  • Buy maps
    • Twitter Search Network Map and Report
    • Graph Server Twitter Search Network Map and Report
    • Other products and services
  • Sample maps
  • Blog
    • Books
    • NodeXL
    • Events
  • Newsletter
  • Videos
  • Contact
  • Log In

v209

How to summarize the URLs, Hashtags and @Users mentioned in clusters of users discussing a Twitter Topic with NodeXL

19MayMay 7, 2015 By Marc Smith

Social media networks tend to be “clumpy”. Here is the map of connections among people who tweeted the term “global warming”:

NodeXL v.210 and newer now supports text analysis of content collected from social media data sources.  NodeXL applies social network clustering and then analyzes text that is grouped by social clusters.

Connections among people who tweet about a topic, keyword or hashtag form patterns that can lead to the formation of sub-groups and clusters.  Multiple clusters are formed within a network when a sub-population of people link to one another far more than to people in other groups. These regions of dense connections define the boundaries between sub-populations. Clusters often reflect the variation in interest in certain people and topics in the population. Some people and topics are more interesting to one group than others. Within these groups certain people and words get repeated more often than others.

Networks can be partitioned by many methods. NodeXL implements several. A collection of vertices can be grouped by the user by applying labels to the vertex worksheet (“Group by vertex attribute”). Or a group of vertices can be determined by an algorithm that looks for differences in the density of connections and divides by the points of least association (“Group by cluster algorithm”). Networks can also be grouped into separate isolated collections of nodes, called “connected components”.

In NodeXL groups can be visualized in multiple ways. Groups can be collapsed into meta-vertices that stand-in for the members of that group (right-click the graph pane and select “Groups>Collapse all groups”). Group members can also be displayed within a “box” with the “group-in-a-box” feature (found in the layout selection menu in the Graph Pane – select “Layout Options”).

Within each group is a population of people along with the tweets they authored in the time period captured by the data set. Each group has a collection of tweets that can be analyzed. The contents of all the tweets in a network can be scanned and certain types of strings can be counted to measure its frequency of mention. These counts can be repeated for each group, allowing groups to be contrasted based on the relative rates strings like URLs, hashtags, and @usernames. Here is a sample of the worksheet NodeXL creates to display all the data about people, URLs, and hashtags frequently mentioned in each group:

The worksheets offers top URLs, hashtags, and users across the entire network, and within each sub-group. The details offer insights into the people and topics of greatest interest.

Top Hashtags in Tweets in G7 G7 Count
globalwarming 24
climate 14
climatechange 10
environment 9
agw 6
books 6
glennbeck 6
rushlimbaugh 6
wildlife 5
science 5

 

Top Hashtags in Tweets in G5 G5 Count
tcot 13
teaparty 4
oil 4
globalwarming 4
p2 2
wrp 2
yyc 2
blameman 1
libtards 1
climatechange 1

 

Top Hashtags in Tweets in G4 G4 Count
ff 2
globalwarming 2
jokeswritethemselves 1
silverlining 1
ulooklikechazbonoonroids 1
jclogic 1
climatechange 1

 

Top URLs in Tweet, in Entire Graph Entire Graph Count
http://LiveScience.com 16
http://bit.ly/IdTUlC 14
http://ow.ly/apxEv 10
http://is.gd/ZSXuVT 10
http://stevengoddard.wordpress.com/2012/04/21/arctic-ice-area-approaching-abnormally-high-range/ 9
http://bit.ly/IbMs8o 9
http://www.financialpost.com/m/wp/fp-comment/blog.html?b=opinion.financialpost.com/2012/04/20/aristotles-climate 8
http://bit.ly/JwlWYw 8
http://yhoo.it/JdLq0Q 7
http://usat.ly/JdNKFh 7

This feature allows the content in sub-groups to be contrasted, thus answering the question: how is this sub-group the same or different from another sub-group?

Posted in All posts, Foundation, Measuring social media, Network clusters and communities, Network metrics and measures, NodeXL, Research, SMRF, Social Media, Social Media Research Foundation Tagged 2012, Analysis, Content Analysis, network, NodeXL, Social Media Research Foundation, Software, update, v209, v210

Connected Action Services

  • Buy a social media network map
  • Log in or Join us
  • My Cart
  • Training
  • Conferences
  • Data Reporting
  • Customize NodeXL
  • Marc Smith
  • About Us

Subscribe to Connected Action

Get updates when there is new content from Connected Action.

Related content:

Twitter Facebookflickrlinkedin
slidesharedeliciousdeliciousVimeo


Social Media Research Foundation

Help support the Social Media Research Foundation

Book: Analyzing Social Media Networks with NodeXL: Insights from a connected world

The book Analyzing Social Media Networks with NodeXL: Insights from a connected world is now available from Morgan-Kaufman and Amazon.

Communities in Cyberspace

Communities in Cyberspace

Recent Posts

  • Buy a map
  • Book: Transparency in Social Media Edited by Sorin Matei, Martha Russell and Elisa Bertino – with a chapter on NodeXL
  • June 5, 2015: Personal Democracy Forum – Talk on taking pictures of virtual crowds
  • Trust issues and Excel: how to open other people’s NodeXL documents
  • May 1st, 2015 at LSU: NodeXL social media networks talk at the “Telling Stories and Using Visuals for Coastal Environmental Communication” workshop

Tags

2009 2010 2011 2013 2014 2015 Analysis Analytics April Chart Conference Data Event Excel graph June Lecture Map March Marc Smith May Media network NodeXL October Paper Presentation Research San Francisco SMRF SMRFoundation SNA social Social Media socialmedia Social Media Research Foundation Social network Sociology Talk Training Twitter University Video Visualization workshop

Categories

Archives

January 2023
M T W T F S S
 1
2345678
9101112131415
16171819202122
23242526272829
3031  
« Jul    

Transparency in Social Media

2015-07-30-Transparency in Social Media-Structures of Twitter Crowds and COnversations
Transparency in Social Media
Sorin Adam Matei, Martha G. Russell, Elisa Bertino

CÓMO ENCONTRAR LOS HASHTAGS MÁS POTENTES: Para convertir LEADS a VENTAS (SEOHashtag nº 1) (Spanish Edition)

Apply NodeXL in espanol!

CÓMO ENCONTRAR LOS HASHTAGS MÁS POTENTES - Para convertir LEADS a VENTAS (SEOHashtag nº 1) (Spanish Edition)
By: Vivian Francos from #SEOHashtag Comparto algunas de las mejores formas de elegir los hashtags más poderosos y
que puedan generar tráfico a tus redes sociales para aprovechar el poder del
hashtag.
Si quieres aumentar tus interacciones, debes aprender a utilizar los hashtags como herramienta.

https://amzn.to/305Hpsv

Networked


Networked By Lee Rainie and Barry Wellman

Social Media in the Public Sector

2015-07-31Social Media in the Public Sector-Cover
Ines Mergel

Ways of Knowing in HCI

2014-Ways of Knowing in HCI - Olson and Kellogg

The Virtual Community


Virtual Community

The Evolution of Cooperation


The Evolution of Cooperation

Governing the Commons


Governing the Commons

SmartMobs


SmartMobs

Networks, Crowds, and Markets


Networks, Crowds, and Markets

Development of Social Network Analysis


Development of Social Network Analysis: A Study in the Sociology of Science

Search

Services

  • Buy a social media network map
  • Log in or Join us
  • My Cart
  • Training
  • Conferences
  • Data Reporting
  • Customize NodeXL
  • Marc Smith
  • About Us
© 2023 Connected Action
AccessPress Parallax by AccessPress Themes
0

Your Cart