Connected Action
Menu
  • Services
    • Buy a social media network map and report
    • Training
    • Conferences
    • Data Reporting
    • Log in or Join us
    • Customize NodeXL
    • NodeXL
    • Marc Smith
    • About Us
  • Buy maps
    • Twitter Search Network Map and Report
    • Graph Server Twitter Search Network Map and Report
    • Other products and services
  • Sample maps
  • Blog
    • Books
    • NodeXL
    • Events
  • Newsletter
  • Videos
  • Contact
  • Log In

Structures

Think link: network patterns in social media

24NovMay 7, 2015 By Marc Smith

2014-Pew-SMRF-NodeXL-6 Kinds of social media network patterns - Animated

Network analysis is a way of looking at the world that focuses on the shape and structure of collections of relationships.

In a network perspective the world is not primarily composed of individuals (“nodes”, “vertices”, “entities”). Instead, a network approach focuses on relationships between individuals (“edges”, “ties”, “connections”, “links”).

When collections of connections are analyzed, network patterns emerge. Networks have a variety of shapes and within them people occupy a variety of locations within each network. Some people are highly connected, while most people have just a few connections, for example.

Network theory provides a big collection of math that enables the measurement of these shapes and structures.

Using these measures, network analysis can identify key people in important locations in the network (for example: hubs, bridges, and islands). Network metrics allow for the network as a whole to be measured in terms of size and shape. Networks have many basic shapes and we have found six shapes to be common in internet and enterprise social media: divided, unified, fragmented, clustered, outward hub and spoke, inward hub and spoke. These shapes are created when people make individual decisions about who to reply to, link to, and like.

Divided networks are created when two groups of people talk about a controversial topic – but do not connect to people in the “other” group. Unified networks are formed by small to medium sized groups that are obscure or professional topics, conference hashtags are a good example. Fragmented networks have few connections among the people in them: these are often people talking about a brand or popular topic or event. Clusters sometimes grow among the people talking about a brand, indicating a existence of a brand “community”. Broadcast networks are formed when a prominent media person is widely repeated by many audience members, forming a hub-and-spoke pattern with the spokes pointed inward at the hub. The final pattern is the opposite, hub-and-spoke patterns with the hub linking out to a number of spokes. This pattern is generated by technical and customer support accounts like those for computer and airline companies. Additional patterns may exist, but these patterns are prominent in many social media network data sets.

When applied to external conversations, social media networks help identify the “mayor” of a hashtag or topic: these are the people at the center of the network. Network maps can be compared to the six basic types of networks to understand the nature of the topic community. We can look for examples of successful social media efforts and map those topic networks. Social media managers can contrast their topics with those of their aspirational targets and measure the difference between where they are and where they want to be.

When applied to enterprise conversations and connections, network analysis can reveal the experts who answer many people’s questions and “brokers” who bridge otherwise disconnected groups as well as the “structural holes” that show where a bridge or link is needed.

These insights can be useful in mergers, HR evaluation of group and manager performance, and identifying internal subject matter experts.

Research performed using NodeXL shows that work teams that have higher levels of internal connection (which is called “network density”) have higher levels of performance and profit. See:

The impact of intragroup social network topology on group performance: understanding intra-organizational knowledge transfer through a social capital framework
Wise, Sean Evan (2013) The impact of intragroup social network topology on group performance: understanding intra-organizational knowledge transfer through a social capital framework. PhD thesis, University of Glasgow.
Full text available as: PDF Download (2499Kb) | Preview
http://theses.gla.ac.uk/3793/

 

Posted in 2014, All posts, Data Mining, Foundation, Measuring social media, Metrics, NodeXL, Presentation, Research, SMRF, SNA, Social Media Research Foundation, Social network, Social Network Analysis, Social Roles, Social Theories and concepts, Sociology, Talks, Visualization Tagged Analysis, Data, graph, Motifs, network, NodeXL, Patterns, SMRF, SNA, Social Media, Social Media Research Foundation, Social network, Structures 1 Comment

Connected Action Services

  • Buy a social media network map
  • Log in or Join us
  • My Cart
  • Training
  • Conferences
  • Data Reporting
  • Customize NodeXL
  • Marc Smith
  • About Us

Subscribe to Connected Action

Get updates when there is new content from Connected Action.

Related content:

Twitter Facebookflickrlinkedin
slidesharedeliciousdeliciousVimeo


Social Media Research Foundation

Help support the Social Media Research Foundation

Book: Analyzing Social Media Networks with NodeXL: Insights from a connected world

The book Analyzing Social Media Networks with NodeXL: Insights from a connected world is now available from Morgan-Kaufman and Amazon.

Communities in Cyberspace

Communities in Cyberspace

Recent Posts

  • Buy a map
  • Book: Transparency in Social Media Edited by Sorin Matei, Martha Russell and Elisa Bertino – with a chapter on NodeXL
  • June 5, 2015: Personal Democracy Forum – Talk on taking pictures of virtual crowds
  • Trust issues and Excel: how to open other people’s NodeXL documents
  • May 1st, 2015 at LSU: NodeXL social media networks talk at the “Telling Stories and Using Visuals for Coastal Environmental Communication” workshop

Tags

2009 2010 2011 2013 2014 2015 Analysis Analytics April Chart Conference Data Event Excel graph June Lecture Map March Marc Smith May Media network NodeXL October Paper Presentation Research San Francisco SMRF SMRFoundation SNA social Social Media socialmedia Social Media Research Foundation Social network Sociology Talk Training Twitter University Video Visualization workshop

Categories

Archives

March 2023
M T W T F S S
 12345
6789101112
13141516171819
20212223242526
2728293031  
« Jul    

Transparency in Social Media

2015-07-30-Transparency in Social Media-Structures of Twitter Crowds and COnversations
Transparency in Social Media
Sorin Adam Matei, Martha G. Russell, Elisa Bertino

CÓMO ENCONTRAR LOS HASHTAGS MÁS POTENTES: Para convertir LEADS a VENTAS (SEOHashtag nº 1) (Spanish Edition)

Apply NodeXL in espanol!

CÓMO ENCONTRAR LOS HASHTAGS MÁS POTENTES - Para convertir LEADS a VENTAS (SEOHashtag nº 1) (Spanish Edition)
By: Vivian Francos from #SEOHashtag Comparto algunas de las mejores formas de elegir los hashtags más poderosos y
que puedan generar tráfico a tus redes sociales para aprovechar el poder del
hashtag.
Si quieres aumentar tus interacciones, debes aprender a utilizar los hashtags como herramienta.

https://amzn.to/305Hpsv

Networked


Networked By Lee Rainie and Barry Wellman

Social Media in the Public Sector

2015-07-31Social Media in the Public Sector-Cover
Ines Mergel

Ways of Knowing in HCI

2014-Ways of Knowing in HCI - Olson and Kellogg

The Virtual Community


Virtual Community

The Evolution of Cooperation


The Evolution of Cooperation

Governing the Commons


Governing the Commons

SmartMobs


SmartMobs

Networks, Crowds, and Markets


Networks, Crowds, and Markets

Development of Social Network Analysis


Development of Social Network Analysis: A Study in the Sociology of Science

Search

Services

  • Buy a social media network map
  • Log in or Join us
  • My Cart
  • Training
  • Conferences
  • Data Reporting
  • Customize NodeXL
  • Marc Smith
  • About Us
© 2023 Connected Action
AccessPress Parallax by AccessPress Themes
0

Your Cart